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Abstract

For solving hyperbolic systems with stiff sources or relaxation terms, time stepping methods should combine favorable
monotonicity properties for shocks and steep solution gradients with good stability properties for stiff terms. In this paper
we consider implicit–explicit (IMEX) multistep methods. Suitable methods will be constructed, based on explicit methods
with general monotonicity and boundedness properties for hyperbolic equations. Numerical comparisons are made with
several implicit–explicit Runge–Kutta methods.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. IMEX linear multistep methods

There are many applications that lead to initial value problems for systems of ordinary differential equa-
tions (ODEs) in RM of the form
0021-9
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1 Th
u0ðtÞ ¼ F ðuðtÞÞ þ GðuðtÞÞ; uð0Þ ¼ u0; ð1:1Þ

where F represents a non-stiff (or mildly stiff) part of the equation, and G is a stiff term, requiring implicit inte-
gration. To solve such systems we consider implicit–explicit (IMEX) schemes, producing numerical approxi-
mations un � uðtnÞ at the time levels tn ¼ nDt. We shall deal in particular with combinations of k-step explicit
and implicit linear multistep methods
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un ¼
Xk

j¼1

ajun�j þ
Xk

j¼1

b̂jDtF ðun�jÞ þ
Xk

j¼0

bjDtGðun�jÞ; ð1:2Þ
with parameters aj, b̂j and bj. For brevity we will usually denote F n ¼ F ðunÞ, Gn ¼ GðunÞ; for non-autonomous
systems this will become F n ¼ F ðtn; unÞ, Gn ¼ Gðtn; unÞ.

Combinations (1.2) of explicit and implicit multistep methods were introduced in [7,32]. In this paper we
shall base such IMEX combinations on explicit methods with favorable monotonicity and boundedness prop-
erties, in order to avoid numerical oscillations for problems with steep solution gradients. The corresponding
implicit methods should provide sufficient stability for stiff terms. The construction of the IMEX schemes in
the present paper and the discussion of the linear stability properties is related to [3]; for this discussion, it will
be assumed that the implicit term GðuÞ is either a discretized symmetric diffusion term or a linear decay term ku
with k 6 0 real. Results for complex k with Rek 6 0 can be found in [10,12]. Stability for nonlinear parabolic
equations in Hilbert spaces has been studied in [1,7].

1.2. Hyperbolic equations with stiff source and relaxation terms

An interesting class of problems suitable for IMEX methods is formed by systems of hyperbolic equations
with stiff sources or relaxation terms
ut þr � f ðuÞ ¼
1

�
gðuÞ; ð1:3Þ
where u ¼ uðx; tÞ 2 Rm. Suitable initial and (inflow) boundary conditions are assumed. In the limit �! 0 the
solution of (1.3) will in general satisfy gðuÞ ¼ 0, which defines a manifold of dimension �m < m. This can lead to
a reduced system of conservation laws, with �u 2 R�m,
�ut þr � �f ð�uÞ ¼ 0: ð1:4Þ
Examples and more detailed information can be found in [22,28], for instance; see also Section 6 for some
additional examples.

To solve (1.3) one thus needs a time stepping method that is capable of treating nonlinear convection terms
efficiently while also providing sufficient stability for the stiff terms. This can be obtained by IMEX schemes.
In view of the reduction (1.4) we want our explicit method in the IMEX combination to possess suitable
monotonicity and boundedness properties, to suppress numerical oscillations. Such explicit methods have
been constructed in [21,30,29].

Finally we note that there can be of course additional terms causing stiffness, such as diffusion. Stiff terms
can also be introduced by chemical reactions or by mechanical stiffness in fluid–structure interactions, for
example.
1.3. Outline

This paper has two main objectives. The first of these is the construction of IMEX linear multistep methods
suited for (1.3) and related problems. The second objective is to study the numerical behavior of these schemes
and to make comparisons with IMEX Runge–Kutta methods.

The outline of this paper is as follows. In Section 2 we present some preliminaries and background material.
The construction of suitable IMEX linear multistep methods, together with a discussion of their linear stabil-
ity properties, is given in Section 3. Some state-of-the-art IMEX Runge–Kutta methods from the literature
[3,20,28] that are to be used in our numerical comparisons are introduced in Section 4. Section 5 contains
a discussion of the discretization errors for the IMEX methods with a focus on the possible order reduction
effects that can arise with Runge–Kutta schemes. The results of several numerical tests with the IMEX mul-
tistep and Runge–Kutta schemes are presented in Section 6. Finally, Section 7 contains a summary and
conclusions.
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2. Preliminaries

2.1. Monotonicity and TVD with arbitrary starting values

Spatial discretization of hyperbolic equations with limiters can lead to non-stiff ODE systems
u0ðtÞ ¼ F ðuðtÞÞ where the function F is such that there is a DtFE > 0 for which
kvþ DtFEF ðvÞk 6 kvk for all v 2 RM ; ð2:1Þ

where k � k is a given semi-norm or convex functional. Due to convexity, it is easily seen that then also
kvþ DtF ðvÞk 6 kvk whenever Dt 6 DtFE. Hence DtFE can be viewed as the maximal step size for the forward
Euler method such that the monotonicity property kunk 6 ku0k is valid for an arbitrary starting value u0.

For some of the explicit or implicit linear multistep methods there exists a C > 0 such that (2.1) implies
kunk 6 max
06j6k�1

kujk for all n P 1 and Dt 6 CDtFE: ð2:2Þ
Originally [30], this was called the TVD (total variation diminishing) property, with k � k the total variation
semi-norm for one-dimensional conservation laws. More recently, with arbitrary semi-norms, it is often called
strong stability preservation (SSP). In view of the generalization below it will be referred to as a monotonicity
property, and the step size coefficient C will be called the monotonicity threshold.

2.2. Boundedness and TVB

Property (2.2) requires that all aj; b̂j P 0, and then C ¼ min16j6kaj=b̂j. However, there are only a few meth-
ods for which all coefficients are non-negative. More relaxed conditions can be derived for linear multistep
methods combined with a starting procedure that generates u1; . . . ; uk�1 from the given u0. For such combina-
tions we can consider the less demanding property
kunk 6 Kku0k for all n P 1 and Dt 6 CDtFE; ð2:3Þ

with some constant K P 1. If k � k is the total variation semi-norm, this is a TVB (total variation boundedness)
property. For general semi-norms or convex functionals we will simply refer to it as boundedness and C will be
called the boundedness threshold.

In contrast to (2.2), there are many linear multistep methods for which (2.3) can hold with a positive thresh-
old C; see [16,29]. For theoretical purposes it is important that the size of the bound K does not depend on the
problem at hand, but only on the coefficients of the multistep method and the starting procedure. In fact, in
numerical experiments [16,17] it appears that K is usually very close to one, but theoretically this is still not
well understood.

As noted before, the basic assumption (2.1) on F can be satisfied for instance for semi-discrete ODE prob-
lems arising from conservation laws with spatial TVD discretizations based on limiters; examples can be found
e.g. in [22,18]. However, also for the so-called WENO spatial discretizations, which do not strictly satisfy (2.1),
it is a useful assumption to find suitable time stepping methods [31].

One can also try to obtain monotonicity and boundedness results for the total IMEX scheme, by making an
assumption similar to (2.1) for G. However, this leads to severe time step restrictions because the threshold
factors C for implicit methods are not much larger than for explicit methods [16,17]; see also [9,15] for related
Runge–Kutta results. From a practical point of view these step size restrictions are not acceptable in general.
Therefore we shall only regard the monotonicity properties of explicit methods and require stability of the
implicit method for stiff problems, so that the limit from 1.3 and 1.4 can be taken.

2.3. Linear stability and scalar test equations

We now consider the stability of the original ODE system (1.1). The most simple equation of that form used
to study linear stability properties of IMEX schemes is the scalar test equation
u0ðtÞ ¼ k̂uðtÞ þ kuðtÞ; k̂; k 2 C; ð2:4Þ
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with F ðuÞ ¼ k̂u and stiff term GðuÞ ¼ ku. We denote in the following ẑ ¼ Dtk̂, z ¼ Dtk. The characteristic equa-
tion for the IMEX multistep method applied to (2.4) is given by
qðfÞ � ẑr̂ðfÞ � zrðfÞ ¼ 0; ð2:5Þ

where
qðfÞ ¼ fk �
Xk

j¼1

ajf
k�j; r̂ðfÞ ¼

Xk

j¼1

b̂jf
k�j; rðfÞ ¼

Xk

j¼0

bjf
k�j: ð2:6Þ
It is well known that stability of the scheme requires that (i) all roots of (2.5) have modulus less than or equal
to one, and (ii) multiple roots have modulus strictly less than one. Multiple roots of modulus one lead to poly-
nomial growth; such roots usually appear only on the boundaries of stability domains.

In applications, the k̂ and k stand for eigenvalues of linearizations of F and G, respectively. Theoretical
results are difficult to obtain if these linearizations do not commute, but in many practical situations stability
considerations based on the simple scalar test equations are (surprisingly) accurate for predicting maximal step
sizes for stability.

Particular attention will be given to the test equation (2.4) where k̂ is purely imaginary and z is real and non-
positive, i.e.,
ẑ ¼ ig; z ¼ n 6 0: ð2:7Þ

This case is relevant, for example, for advection–diffusion equations if central finite differences or spectral
approximations are used in space.

The damping properties of the scheme in the limit case n! �1 are determined by the damping factor
D � maxfjfj : rðfÞ ¼ 0g: ð2:8Þ

This limit case corresponds to the damping of the high-frequency Fourier modes for advection–diffusion
equations.

Related to AðaÞ stability for implicit methods, we can require that the IMEX scheme is stable whenever
n 6 0 and jg=nj 6 arctanðaÞ with angle a 6 1

2
p. Actually, for advection–diffusion equations, stability within

a parabola n 6 0, jg2=nj 6 arctanðbÞ can be more relevant than for a wedge with angle a; see [6] for instance.
However, for the methods considered in this paper, a large angle a will correspond to a large b, as can be seen
from the figures below for the stability domains DARð2Þ.

2.4. Stability restrictions for advection–diffusion–reaction equations

In the next sections we will graphically present the stability properties of the IMEX methods for advection–
reaction equations
ut þ aux ¼ �cu ð2:9Þ

and for advection–diffusion equations
ut þ aux ¼ duxx; ð2:10Þ

with constant coefficients a; c; d P 0. The spatial operators will be discretized by some well-known finite-dif-
ference formulas. In both cases (2.9) and (2.10), Fourier transformation gives rise to a scalar test Eq. (2.4) with
k̂ the eigenvalues for the advection terms, which are assumed to be taken explicitly in the IMEX schemes, and
k those of the (stiff) reaction or diffusion terms. In fact, we could also deal with a non-scalar reaction term �Ku
with positive definite matrix K, in which case c would represent an eigenvalue of K.

Consider, as an example, the standard second-order centered discretizations for advection and diffusion
with mesh width Dx. Let m ¼ aDt=Dx be the Courant number and denote the cell Péclet number for advec-
tion–diffusion by l ¼ aDx=d. Then the eigenvalues for the advection term, multiplied by Dt, are
ẑ ¼ im sinð2xÞ; ð2:11Þ

where x is the frequency of the corresponding Fourier mode. For (2.9) we have, of course,
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z ¼ �cDt; ð2:12Þ

whereas the eigenvalues for the implicit diffusion term in (2.10) are given by
z ¼ �4
l
m

sin2 x: ð2:13Þ
Stability for the advection–reaction equation (2.9) therefore requires that the root condition for the character-
istic equation (2.5) is satisfied for ẑ ¼ ig, jgj 6 m and z ¼ n 6 0. For this condition we present plots of stability
domains in the ðn; mÞ-plane. Actually, only the boundaries of these domains will be displayed, separating the
region of stability (lower-left part) from the region of instability (upper-right part). As noted before, on the
boundary itself there may be multiple roots of modulus one, leading to a weak (polynomial) instability.

For the advection–diffusion Eq. (2.10) stability is slightly more complicated because ẑ and z are then cou-
pled through the frequency x. It is then required that the root condition for (2.5) is satisfied for all ẑ; z given by
(2.11), (2.13) with x 2 ½0; 2p�. Stability domains for this case will be presented in the ðl; mÞ-plane with cell Péc-
let number l horizontally and Courant number m vertically, on logarithmic scale.

Since we are particularly interested in advection discretizations with good shape-preserving properties, we
will also present the corresponding stability domains for spatial advection discretization by the first-order
upwind formula, where
z ¼ �2m sin2 xþ im sinð2xÞ ð2:14Þ

and by the third-order upwind-biased formula, where
z ¼ � 4

3
m sin4 x� im sinð2xÞ 1þ 2

3
sin2 x

� �
: ð2:15Þ
In all cases the diffusion discretization is second-order central.
The different advection discretizations are indicated by their order q ¼ 1; 2; 3, that is, q = 1 for first-order

upwind, q = 2 for second-order central and q = 3 for the third-order upwind-biased formula. The stability
domains in the ðn; mÞ-plane for advection–reaction will be denoted by DARðqÞ. These will be displayed in
the figures below on a linear scale with growth rate n on the horizontal axis and Courant number m on the
vertical axis. Likewise, DADðqÞ will be the stability domain for advection–diffusion in the ðl; mÞ-plane, and
for those figures a logarithmic scale is used with Courant number m 2 ½0:1; 10� and Péclet number
l 2 ½10�4; 104�. Finally we note that closely related figures for the central difference case q = 2 have been pre-
sented in [3] for some IMEX multistep schemes and in [2] for some IMEX Runge–Kutta schemes.

2.5. Order conditions and error constants

The order conditions and the structure of local errors for IMEX linear multistep methods are quite simple,
see for instance [3,7] and also Section 5.2. Let q0 ¼ 1�

Pk
j¼1aj and
ql ¼
ð�1Þl

l!

Xk

j¼0

ð�jlaj þ ljl�1bjÞ; q̂l ¼
ð�1Þl

l!

Xk

j¼0

ð�jlaj þ ljl�1b̂jÞ; ð2:16Þ
where we can set a0 ¼ b̂0 ¼ 0. It will be assumed that
q0 ¼ 0; ql ¼ q̂l ¼ 0 ð1 6 l 6 pÞ: ð2:17Þ

These are just the conditions for the individual explicit and implicit methods to be of order p, and that is suf-
ficient for the IMEX combination to be of order p as well. It will always be assumed that p P 1.

The error constants of the IMEX scheme are given by
E ¼
qpþ1

rð1Þ ;
bE ¼ q̂pþ1

r̂ð1Þ : ð2:18Þ
These are the constants that will appear in the global error for non-stiff problems, as can be seen by following
the reasoning given in [13, p. 373]. The discretization errors for stiff problems will be discussed in Section 5.
Note that for methods of order p P 1 we have

Pk
j¼0bj ¼

Pk
j¼1b̂j, that is, rð1Þ ¼ r̂ð1Þ.
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3. The IMEX linear multistep methods

3.1. General construction issues

Our approach to develop implicit–explicit methods with good nonlinear stability properties is to start from
an explicit linear multistep method with optimal or near-optimal monotonicity or boundedness properties,
and then construct a compatible implicit method. Notice that once we have specified an explicit k-step method
for an order-p IMEX scheme, we end up with k � p þ 1 parameter family of compatible implicit methods. This
leads us to a two-step approach for constructing IMEX schemes. First, we select an explicit method with good
monotonicity properties. Second, we optimize over the free parameters to find a good, compatible implicit
method.

The explicit methods will be selected from the class of optimal monotonicity-preserving methods (or TVD
multistep methods) of Shu [30], or methods with favorable boundedness properties. Schemes of that type have
been determined in [17,29].

The determination of the implicit method is more subtle, and requires the choice of some optimization cri-
teria. Many properties are desirable, however, we shall mainly focus on methods that have a strong damping
of high-frequency error modes. Methods of this type can be more efficient when an iterative treatment of the
implicit equations is undertaken, and they are less prone to aliasing errors and tend to minimize spurious oscil-
lations [3]. Based on this choice, we obtain an optimization problem which we refer to as the optimal damping

criterion:
min
fb0;b1...;bkg

Dðb0; b1 . . . ; bkÞ; ð3:1Þ
where D is the damping factor for the scheme defined by (2.8).
Alternatively, we may want to emphasize schemes with large linear stability domains while still maintaining

some damping of high-frequency error modes. While it is not obvious how to obtain optimal linear stability
properties for general problems, we have found that minimizing the average damping over part of the ðn; gÞ-
plane usually gives good overall stability. We therefore also search for good implicit methods by finding
IMEX schemes which minimize the product of the damping parameter and such an average damping. The
optimization criteria, which will be referred to as the combined criteria, is given by
min
fb0;b1...;bkg

Sðb0; b1 . . . ; bkÞDðb0; b1 . . . ; bkÞ; ð3:2Þ
where S is the average damping over a selected part of the ðn; gÞ-plane. In our optimizations we take
S �

R
X rðn; gÞdndg with X ¼ ½�10; 0� � ½0; 1� and rðn; gÞ the maximal modulus root for (2.5), (2.7). The integral

is treated using a piecewise constant approximation of r sampled over a 10 · 10 grid that is equispaced in each
coordinate direction.

All optimizations have been carried out using the Matlab Optimization Toolkit. Maple was used to find
fractional approximations of the coefficients which satisfy the order conditions exactly.

3.2. Order-two schemes

3.2.1. A case study: conflicting optimization criteria

Instead of damping properties, there are other criteria one could take for optimization. Let us consider as
an example the second-order explicit three-step method of Shu [30], augmented by an implicit method
un ¼
3

4
un�1 þ

1

4
un�3 þ

3

2
DtF n�1 þ

X3

j¼0

bjDtGn�j: ð3:3Þ
These schemes have a monotonicity threshold value of C ¼ 1
2
. The requirement of order two leaves us two free

parameters bj, which we can take to be b0 and b1.
We can estimate the angle a such that the IMEX scheme is stable for the test Eqs. (2.4), (2.7) whenever

n 6 0 and jg=nj 6 arctanðaÞ. This angle can be estimated by studying the root locus curve for n! �1. It
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gives only an estimate because the boundary of the stability domain for moderate negative n values needs to be
verified separately, but for the schemes presented below the estimates provide accurate values for the actual
angle a.

Fig. 1 shows these estimated angles a, together with the damping factors and error constants of the implicit
methods as functions of b0; b1. The contour lines for D and a are only displayed for the parameter region
where jDj 6 1, because otherwise the implicit method is not A0-stable. It is obvious from the figure that for
this particular explicit method optimization of a does not combine with a good damping factor or small error
constant.

Optimizing the damping factor D or the combined criteria leads to
Fig. 2.
IMEX
un ¼
3

4
un�1 þ

1

4
un�3 þ

3

2
DtF n�1 þ

4

9
DtGn þ

2

3
DtGn�1 þ

1

3
DtGn�2 þ

1

18
DtGn�3; ð3:4Þ
to which we will refer as the IMEX-Shu(3, 2) scheme. As mentioned above, this scheme has threshold value
C ¼ 0:5, and it has a rather small angle a ¼ 0:06. Further characteristic values of the scheme are D ¼ 0:5,bE ¼ 0:333 and E ¼ 0.

Second-order implicit–explicit schemes based on explicit TVD linear multistep methods were first consid-
ered by Gjesdal [12]. A scheme with good linear stability properties arising from this analysis is
un ¼
3

4
un�1 þ

1

4
un�3 þ

3

2
DtF n�1 þ DtGn þ

1

2
DtGn�3: ð3:5Þ
We will refer to this scheme as the IMEX-SG(3,2) scheme. It has a ¼ 0:38, D ¼ 0:794, bE ¼ 0:333 and
E ¼ �0:667. The linear stability properties are better than for the IMEX-Shu(3, 2) scheme (see Fig. 2), while
the damping factor D and error constant E are less favorable.

For this example with the three-step scheme (3.3) optimizing the damping properties or the angles a leads to
a substantial difference in stability properties of the resulting IMEX schemes for the advection–diffusion–reac-
tion test problems. We note that for most of the other schemes considered in this paper these differences were
far less pronounced.

Since our primary goal is to provide good schemes for nonlinear systems of the type (1.3), for which damp-
ing in the limit �! 0 is important, we will give some preference to optimizing the damping properties. Of
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-Shu(3,2) extensions (3.4) (light gray) and (3.5) (thin gray).
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course, this should not go at all costs. The combined criteria will usually provide sensible choices. For all
methods the stability domains DAR for advection–reaction and DAD for advection–diffusion will be shown
graphically.

3.2.2. Other order-two schemes

Comparisons against standard two-step IMEX schemes of order two can be made. The IMEX-BDF2
scheme
Fig. 3.
IMEX
line fo
un ¼
4

3
un�1 �

1

3
un�2 þ

4

3
DtF n�1 �

2

3
DtF n�2 þ

2

3
DtGn ð3:6Þ
is a particularly favorable choice, as it has a large threshold value C ¼ 5
8

and optimal damping D ¼ 0 for high-
frequency error modes. The error constants for the explicit and implicit methods are bE ¼ 0:667 and
E ¼ �0:333, respectively.

Another possibility is to base the IMEX scheme on the explicit two-step Adams method, resulting in the
IMEX-Adams2 scheme
un ¼ un�1 þ
3

2
DtF n�1 �

1

2
DtF n�2 þ

9

16
DtGn þ

3

8
DtGn�1 þ

1

16
DtGn�1: ð3:7Þ
This scheme has C ¼ 4
9

and the strongest damping of high-frequency error modes D ¼ 1
3

among the methods
based on the explicit two-step Adams method. The error constants are given by bE ¼ 0:417 and
E ¼ �0:146. This method first appeared in [3] and may be viewed as a variant of the popular Crank–Nichol-
son Adams–Bashforth combination, but with superior damping properties.

The boundaries of the stability domains DARðqÞ, q ¼ 1; 2; 3, for advection–reaction equations are presented
in Fig. 2, with z ¼ n 6 0 horizontally and Courant number m vertically. Fig. 3 shows the boundaries of the
DADðqÞ domains for advection–diffusion with Péclet number l horizontally and Courant number m vertically,
both on logarithmic scale. It is clear from these figures that the linear stability properties of the IMEX-SG(3,2)
and the IMEX-BDF2 scheme are very similar. These are more favorable than for either the IMEX-Shu(3,2)
scheme or the IMEX-Adams2 scheme.

Finally we note that starting with the explicit two-step Adams method or the extrapolated BDF2 method,
corresponding implicit methods can be found that provide larger stability domains, but this would increase the
damping factors D and absolute error constants jEj.

3.3. Order-three schemes

New schemes arise when orders three and higher are considered. We first consider methods based on the
explicit TVD multistep methods of Shu [30]. There are no three-step, third-order explicit methods which
are monotone for arbitrary starting values [21,30], but, optimal four- and five-step methods are known
[30]. We can construct the corresponding IMEX schemes by optimizing the damping criterion or the combined
criteria as described in Section 3.1. The latter approach gives larger stability domains with only a small
increase in the asymptotic damping factor D. Therefore we prefer the combined criteria for these schemes.
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The corresponding third-order four-step IMEX-Shu(4, 3) scheme is given by
un ¼
16

27
un�1 þ

11

27
un�4 þ

16

9
DtF n�1 þ

4

9
DtF n�4 þ

9035

19683
DtGn þ

13541

19683
DtGn�1 þ

1127

2187
DtGn�2

þ 7927

19683
DtGn�3 þ

3094

19683
DtGn�4: ð3:8Þ
Its characteristic values are C ¼ 0:333, D ¼ 0:779 and bE ¼ �0:3, E ¼ 0:036.
The third-order five-step IMEX-Shu(5, 3) scheme is
un ¼
25

32
un�1 þ

7

32
un�5 þ

25

16
DtF n�1 þ

5

16
DtF n�5 þ

15863

32768
DtGn þ

1159

2048
DtGn�1 þ

5019

16384
DtGn�2

þ 899

4096
DtGn�3 þ

6811

32768
DtGn�4 þ

187

2048
DtGn�5: ð3:9Þ
For this method we have C ¼ 0:5, D ¼ 0:717 and bE ¼ �0:556, E ¼ 0:64.
Alternatively, we may start from the explicit TVB0(3, 3) method from [29], which has an optimal threshold

factor among the three-step methods of order three, and construct a compatible implicit method by numeri-
cally optimizing D over the corresponding class of implicit three-step linear multistep methods of order three.
This yields the IMEX-TVB0(3,3) scheme
un ¼
3909

2048
un�1 �

1367

1024
un�2 þ

873

2048
un�3 þ

18463

12288
DtF n�1 �

1271

768
DtF n�2 þ

8233

12288
DtF n�3

þ 1089

2048
DtGn �

1139

12288
DtGn�1 �

367

6144
DtGn�2 þ

1699

12288
DtGn�3: ð3:10Þ
In the explicit case G = 0 it satisfies the boundedness property (2.3) provided Dt 6 CDtFE with C ¼ 0:536, and
it gives a good damping of high-frequency error modes, D ¼ 0:639. The error constants are bE ¼ �0:832 and
E ¼ 0:195. Optimization with the combined criteria gave only a slight perturbation of (3.10).

Another IMEX scheme with a favorable boundedness property is the IMEX-BDF3 scheme
un ¼
18

11
un�1 �

9

11
un�2 þ

2

11
un�3 þ

18

11
DtF n�1 �

18

11
DtF n�2 þ

6

11
DtF n�3 þ

6

11
DtGn; ð3:11Þ
with C ¼ 7
18

and D ¼ 0. The error constants are bE ¼ �0:75, E ¼ 0:25.
As part of our comparison we also consider the IMEX-Adams3 scheme
un¼ un�1þ
23

12
DtF n�1�

4

3
DtF n�2þ

5

12
DtF n�3þ

4661

10000
DtGnþ

15551

30000
DtGn�1þ

1949

30000
DtGn�2�

1483

30000
DtGn�3;

ð3:12Þ
with C ¼ 84=529, D ¼ 0:674, bE ¼ �0:375 and E ¼ 0:091. This is a slight modification of a method introduced
in [3].

Among these three-step schemes, the scheme IMEX-TVB0(3,3) has the largest C value by a wide margin: it
is 38% and 138% larger than the corresponding values for IMEX-BDF3 and IMEX-Adams3. It is also more
favorable than for either IMEX-Shu(4, 3) or IMEX-Shu(5, 3), in particular when the number of steps is taken
into account, where it should be noted that the threshold value C for the latter schemes refers to the strict
monotonicity property (2.2) rather than the boundedness property (2.3).

Another important property of IMEX-TVB0(3, 3) is that its explicit method has a relatively large linear sta-
bility region S 2 C (where linear stability is valid for the test equation u0 ¼ k̂u, ẑ ¼ Dtk̂ 2 C) that includes a
part of the imaginary axis. See Fig. 1 in [29] for a comparison of the stability region of this explicit method
with the extrapolated BDF3 method.

The boundaries of the stability domains DARðqÞ and DADðqÞ, q ¼ 1; 2; 3, of the above order-three schemes
are shown in Figs. 4 and 5. The best results are obtained for the three-step schemes IMEX-TVB0(3, 3) and
IMEX-BDF3. The stability domains for IMEX-Shu(5, 3) are comparable, but this is already a five-step
scheme.
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3.4. Order-four schemes

IMEX schemes based on explicit methods with the strict monotonicity property (2.2) become more cum-
bersome for orders greater than three, since more steps are required to produce reasonable threshold values
C. For example, taking six steps, the largest possible C value is about 0.164. Constructing an IMEX scheme
with this explicit component by an optimization of the combined criteria leads to the following IMEX-
Shu(6, 4) scheme,
un ¼
137

400
un�1 þ

959

5000
un�4 þ

8781

94000
un�5 þ

87487

235000
un�6 þ

976903

470000
DtF n�1 þ

136757

117500
DtF n�4

þ 266997

470000
DtF n�5 þ

237

500
DtGn þ

7547

10000
DtGn�1 þ

299

400
DtGn�2 þ

4513

5875
DtGn�3 þ

118099

235000
DtGn�4

þ 174527

470000
DtGn�5 þ

90349

470000
DtGn�6: ð3:13Þ
Here D ¼ 0:880, bE ¼ 0:236 and E ¼ �0:088. Optimization of the damping factor D alone lead to unacceptably
small linear stability domains and only a small decrease in D.

As an alternative, we may take the TVB(4, 4) scheme from [29] as the explicit method, and search for an
implicit method that minimizes the decay of high-frequency error modes, D. This leads to the scheme
un ¼
21531

8192
un�1 �

22753

8192
un�2 þ

12245

8192
un�3 �

2831

8192
un�4 þ

13261

8192
DtF n�1 �

75029

24576
DtF n�2 þ

54799

24576
DtF n�3

� 15245

24576
DtF n�4 þ

4207

8192
DtGn �

3567

8192
DtGn�1 þ

697

24576
DtGn�2 þ

4315

24576
DtGn�3 �

41

384
DtGn�4: ð3:14Þ
We note that optimization over the combined criteria only lead to a perturbation of this scheme. Key prop-
erties of the scheme are that C ¼ 0:458, the asymptotic damping factor is given by D ¼ 0:685 and the error
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constants are bE ¼ 2:386, E ¼ �0:544. It should be noted that these error constants are quite large compared
to the other fourth-order schemes. However, for higher-order methods the error constants are less signifi-
cant than for low-order methods, since the error declines more rapidly as Dt is reduced for a high-order
method.

It is natural to compare this IMEX-TVB(4, 4) scheme against the fourth-order IMEX-BDF4 scheme
Fig. 6.
gray) a
un ¼
48

25
un�1 �

36

25
un�2 þ

16

25
un�3 �

3

25
un�4 þ

48

25
DtF n�1 �

72

25
DtF n�2 þ

48

25
DtF n�3 �

12

25
DtF n�4 þ

12

25
DtGn:

ð3:15Þ

The characteristic values are C ¼ 7

32
, D ¼ 0 and bE ¼ 0:8, E ¼ �0:2.

With respect to boundedness (2.3), the IMEX-TVB(4, 4) scheme provides for a 109% improvement in allow-
able step size in the limit G = 0 compared to IMEX-BDF4. We further remark that the stability region of the
explicit method includes part of the imaginary axis and it compares favorably against that of the extrapolated
BDF4 method; see [29, Fig. 1].

Finally we consider the fourth-order explicit Adams method. Optimization of the damping criterion gives
the IMEX-Adams4 scheme
un ¼ un�1 þ
55

24
DtF n�1 �

59

24
DtF n�2 þ

37

24
DtF n�3 �

9

24
DtF n�4 þ

5

12
DtGn þ

5

8
DtGn�1 þ

1

24
DtGn�2

� 1

8
DtGn�3 þ

1

24
DtGn�4: ð3:16Þ
For this method we have the unfavorable threshold value C ¼ 0. Moreover D ¼ 1 only, that is, there is no
damping for high-frequency Fourier components. Also the linear stability properties are quite poor. On
the other hand, the error constants are relatively small with bE ¼ 0:349 and E ¼ �0:068, but that is unfor-
tunately not sufficient to make it a good scheme. We include this scheme in our tests mainly for
comparison.

The boundaries of the stability domains DARðqÞ and DADðqÞ, q ¼ 1; 2; 3, are shown in the Figs. 6 and 7. We
see that also the linear stability properties of the IMEX-TVB(4,4) scheme are the best among these fourth-
order schemes, followed by IMEX-BDF4. Due to lack of damping in its implicit method, the IMEX-Adams4
scheme requires small step sizes, i.e. small Courant numbers m, in the diffusion dominated case l! 0.

3.5. Order-five schemes

Five-step schemes of order five may also be constructed. Since the step size restrictions that arise from
requiring monotonicity for arbitrary starting values become even more severe than for the lower-order
schemes we only consider IMEX extensions for explicit methods that satisfy the boundedness property (2.3).

First, consider the TVB0(5, 5) method from [29]. A numerical search is carried out over the corresponding
class of implicit, five-step, fifth-order methods to determine the coefficients with the best asymptotic damping
factor D. This yields the IMEX-TVB0(5,5) scheme
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Boundaries of DARðqÞ for the fourth-order methods IMEX-BDF4 (dark gray), IMEX-TVB(4,4) (gray), IMEX-Shu(6,4) (light
nd IMEX-Adams4 (thin black).
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un ¼
13553

4096
un�1 �

38121

8192
un�2 þ

7315

2048
un�3 �

6161

4096
un�4 þ

2269

8192
un�5 þ

10306951

5898240
DtF n�1

� 13656497

2949120
DtF n�2 þ

1249949

245760
DtF n�3 �

7937687

2949120
DtF n�4 þ

3387361

5898240
DtF n�5 þ

4007

8192
DtGn

� 4118249

5898240
DtGn�1 þ

768703

2949120
DtGn�2 þ

47849

245760
DtGn�3 �

725087

2949120
DtGn�4 þ

502321

5898240
DtGn�5: ð3:17Þ
Note that this scheme has a threshold value C ¼ 0:376 and a damping parameter D ¼ 0:709. The error con-
stants are bE ¼ �4:740 and E ¼ 0:976. Similar to the fourth-order case, a search with the combined criteria
only produced a perturbation of this scheme.

As a basis for comparison, we consider the fifth-order IMEX-BDF5 scheme, which is given by
un ¼
300

137
un�1 �

300

137
un�2 þ

200

137
un�3 �

75

137
un�4 þ

12

137
un�5 þ

300

137
DtF n�1 �

600

137
DtF n�2

þ 600

137
DtF n�3 �

300

137
DtF n�4 þ

60

137
DtF n�5 þ

60

137
DtGn: ð3:18Þ
For this scheme we have C ¼ 0:0867, D ¼ 0 and error constants bE ¼ �0:833, E ¼ 0:167.
In terms of the step size restriction for boundedness (2.3), the scheme IMEX-TVB0(5,5) gives a 335%

improvement in allowable step size over the IMEX-BDF5 scheme. The linear stability region of the explicit
method is also favorable when compared against the extrapolated BDF5 method; see [29, Fig.2]. These explicit
methods do not include the imaginary axis near the origin in their stability regions; by a fundamental result of
[19] it is known that this is impossible for any five-step method of order five. This explains the behavior in
Fig. 9 for DADðqÞ for the central difference case q = 2 in the advection dominated case (large cell Péclet num-
bers l). Further it is again clear from the Figs. 8 and 9 that the linear stability properties of IMEX-TVB0(5,5)
are significantly better than those of IMEX-BDF5.
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Fig. 8. Boundaries of DARðqÞ for the fifth-order methods IMEX-BDF5 (dark gray) and IMEX-TVB0(5,5) (gray).
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Fig. 9. Boundaries of DADðqÞ for the fifth-order methods IMEX-BDF5 (dark gray) and IMEX-TVB0(5,5) (gray).
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4. IMEX Runge–Kutta methods

For comparisons we will also consider combinations of s-stage explicit and implicit Runge–Kutta methods,
with internal stage vectors un;i, i ¼ 1; . . . ; s,
un;i ¼ un�1 þ
Xs

j¼1

âijDtF ðun;jÞ þ
Xs

j¼1

aijDtGðun;jÞ;

un ¼ un�1 þ
Xs

j¼1

b̂jDtF ðun;jÞ þ
Xs

j¼1

bjDtGðun;jÞ:
ð4:1Þ
Similar to the multistep methods, the coefficients of the explicit method are denoted by hats, therefore âij ¼ 0
for j P i. Usually the implicit method is chosen from the class of diagonally implicit (DIRK) methods, so then
aij ¼ 0 for j > i. For compatibility with the explicit method, the DIRK method can be padded with zero coef-
ficients as in [2], so that un;1 ¼ un becomes a trivial stage.

Let ci ¼
P

jaij and ĉi ¼
P

jâij. For non-autonomous systems the function evaluations F ðun;jÞ, Gðun;jÞ in (4.1)
are replaced by F ðtn�1 þ ĉjDt; un;jÞ and Gðtn�1 þ cjDt; un;jÞ. For many IMEX Runge–Kutta methods we have
ci ¼ ĉi for all i ¼ 1; . . . ; s, and then the internal vectors un;i are consistent approximations to uðtn�1 þ ciDtÞ.

However, not all IMEX Runge–Kutta methods in the literature are such that ci ¼ ĉi. In particular for the
so-called asymptotic-preserving methods of Pareschi and Russo [27,28] it is required that a11 6¼ 0 so that the
limit from 1.3,1.4 remains valid for any starting value. For these methods c1 6¼ ĉ1 ¼ 0.

Test results and comparisons with the IMEX linear multistep schemes will be presented for several state-of-
the-art Runge–Kutta combinations from [3,20,28]. The methods are denoted by the triple ðsI ; sE; pÞ, where
sI ; sE are the effective number of stages (not counting trivial stages) of the explicit and implicit methods, respec-
tively, and p is the order of the IMEX Runge–Kutta scheme. For implicit methods with a trivial stage, IMEX
combinations with sI ¼ s� 1 occur. Moreover, for some methods b̂s ¼ 0, in which case sE ¼ s� 1. Compared
to the IMEX linear multistep schemes, the amount of work per step for an IMEX Runge–Kutta scheme will
be roughly sE times larger if the work of performing F evaluations dominates, and sI times larger if the work
for solving the implicit relations with G dominate. We will take sav ¼ 1

2
ðsE þ sIÞ as an average measure.

The IMEX Runge–Kutta methods used in our comparisons are:

� the methods (2,2,2) and (3,4,3) from Ascher, Ruuth and Spiteri [2], which we refer to as ARS(2,2,2) and
ARS(3, 4,3);
� the methods IMEX-SSP2(2,2,2), IMEX-SSP3(4,3,3) of Pareschi and Russo [28, Tables 2, 6], based on

monotone (SSP) explicit methods, which we refer to as PR(2,2,2) and PR(4,3,3);
� the fourth- and fifth-order methods ARK4(3)6L[2]SA and ARK5(4)8L[2]SA from Kennedy and Carpenter

[20, pp. 176,177], which we refer to as KC(5,6,4) and KC(7,8,5).

In Figs. 10 and 11 the scaled stability domains for these schemes are presented. Scaling is done to make the
figures comparable to those for the multistep schemes, by taking the amount of work per step into consider-
ation. We therefore replace the Courant number m by m=sav and the growth rate n ¼ �cDt by n=sav.
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The scaled stability domains for these IMEX Runge–Kutta schemes are in general somewhat smaller than
for the optimal multistep schemes of the same order. The linear stability properties of the fifth-order
KC(7, 8,5) scheme are rather disappointing. The domains DADðqÞ for KC(5, 6,4) have a somewhat irregular
shape for q ¼ 1; 3, but the actual stability bounds are satisfactory for this scheme.

The stability domains for the ARS(3, 4,3) scheme differ from all others considered here when large (nega-
tive) damping factors or small cell Péclet numbers are considered, in the sense that there remains a stability
bound on the Courant numbers m. In the figure for DARð2Þ that is not clear, but it would become visible
on larger scale; see also the comments in [6]. In the limit, for damping factor n! �1 we get for this
ARS(3,4,3) scheme the stability restrictions m 6 6:24 if q = 1, m 6 12:72 if q = 2, and m 6 8:40 if q = 3. For
the other schemes the stability requirement on m becomes more and more relaxed with increasing jnj. For
KC(7, 8,5) the increase of allowable m is quite slow, however.

5. Discretization errors for IMEX methods

5.1. Local and global errors

For an analysis of discretization errors, certain smoothness assumptions are to be made. The discretization
errors of the IMEX methods will be expressed in terms of derivatives of uðtÞ and uðtÞ ¼ F ðuðtÞÞ. It will be
assumed that these derivatives exist and are moderately sized (independent of the stiffness of the problem).

The global errors en ¼ uðtnÞ � un are the quantities of principle interest. For these, a recursion of the form
en ¼
Xk

j¼1

Rn;jen�j þ dn ð5:1Þ
can be derived, where k = 1 for the (one-step) Runge–Kutta methods. Here the matrices Rn;j determine the
propagation of previous errors and dn is a new error introduced in this step, commonly called the local dis-
cretization error.
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In this section we derive expressions for the errors that are not affected by the stiffness of the problem. For this
reason, partial derivatives GðjÞðuðtÞÞwill not be used, only total derivatives such as dj

dtj GðuðtÞÞ ¼ uðjþ1ÞðtÞ � uðjÞðtÞ.

5.2. Linear multistep methods

For comparison with the structure of errors with Runge–Kutta methods, we first discuss the discretization
errors for the IMEX linear multistep methods. Let the coefficients ql, q̂l be given by (2.16).

Insertion of the exact solution values in the scheme (1.2) gives a residual rn, commonly called the local trun-
cation error,
uðtnÞ ¼
Xk

j¼1

ajuðtn�jÞ þ
Xk

j¼1

b̂jDtF ðuðtn�jÞÞ þ
Xk

j¼0

bjDtGðuðtn�jÞÞ þ rn: ð5:2Þ
By Taylor expansion around t ¼ tn it is seen that
rn ¼
X

lPpþ1

ðqlDtluðlÞðtnÞ þ ðq̂l � qlÞDtluðl�1ÞðtnÞÞ: ð5:3Þ
Hence, the order conditions (2.17) imply that the truncation error of the IMEX scheme is OðDtpþ1Þ without
any matching conditions between the explicit and implicit method. Moreover, the local truncation error is nat-
urally expressed in terms of derivatives of u and u, only. Therefore, for the linear multistep methods, stiffness
does not affect these local errors.

We are of course interested in the global errors en ¼ uðtnÞ � un. If we define matrices Zn; bZ n, e.g. by the mean
value theorem, such that
DtðGðuðtnÞÞ � GðunÞÞ ¼ Znen; DtðF ðuðtnÞÞ � F ðunÞÞ ¼ bZ nen;
the global errors are found to satisfy the recursion (5.1) with local discretization error
dn ¼ ðI � b0ZnÞ�1rn: ð5:4Þ

Under natural conditions on the ODE system it can be concluded that the norm of this inverse matrix is
bounded in a suitable norm by a constant C uniformly in the stiffness of the problem (often C 6 1), and then
the bound for the residual errors directly leads to a bound on the local discretization errors dn that is not af-
fected by stiffness.

The amplification matrices in (5.1) are given by
Rn;j ¼ ðI � b0ZnÞ�1ðajI þ b̂j
bZ n�j þ bjZn�jÞ:
If F is a genuinely non-stiff term, then bZ n�j ¼ OðDtÞ, and for stability these contributions can be neglected, in
which case stability considerations of the IMEX schemes are the same as for the implicit method; see [14] for
instance. In the mildly stiff case we will have bZ m ¼ Oð1Þ only, and then stability for general nonlinear systems
becomes very complicated. In general stability is only studied for linear problems with normal commuting
matrices, in which case it is sufficient to consider the scalar linear test Eq. (2.4).

5.3. Runge–Kutta methods

To derive local error expressions for the Runge–Kutta methods it is convenient to view the stage vectors un;i

as approximations to uðtn;iÞ, tn;i ¼ tn�1 þ ciDt for i ¼ 1; . . . ; s. Inserting these exact solution values in the stages
we obtain residual errors rn;i and rn;0,
uðtn;iÞ ¼ uðtn�1Þ þ
Xi�1

j¼1

âijDtF ðuðtn;jÞÞ þ
Xi

j¼1

aijDtGðuðtn;jÞÞ þ rn;i;

uðtnÞ ¼ uðtn�1Þ þ
Xs

j¼1

b̂jDtF ðuðtn;jÞÞ þ
Xs

j¼1

bjDtGðuðtn;jÞÞ þ rn;0:

ð5:5Þ



W. Hundsdorfer, S.J. Ruuth / Journal of Computational Physics 225 (2007) 2016–2042 2031
Let the matrices A ¼ ðaijÞ, bA ¼ ðâijÞ 2 Rs�s and the vectors b ¼ ðbiÞ, b̂ ¼ ðb̂iÞ and c ¼ ðciÞ 2 Rs contain the

coefficients of the method. Further, we denote cl ¼ ðcl
iÞ 2 Rs for l P 1 and e ¼ ð1; . . . ; 1ÞT 2 Rs. Finally, let

rn ¼ ðrn;iÞ 2 RsM . Assume for the moment that M = 1 (scalar ODE) for convenience of notation. Then Taylor
expansion yields
2 It c
metho
rn ¼
X
lP1

1

l!
ððcl � lAcl�1ÞDtluðlÞðtn�1Þ þ lðAcl�1 � bAcl�1ÞDtluðl�1Þðtn�1ÞÞ; ð5:6Þ
where c0 is defined as c0 ¼ e. In the same way we find
rn;0 ¼
X
lP1

1

l!
ðð1� lbTcl�1ÞDtluðlÞðtn�1Þ þ lðbTcl�1 � b̂Tcl�1ÞDtluðl�1Þðtn�1ÞÞ: ð5:7Þ
Let Zn ¼ diagðZn;iÞ, bZ n ¼ diagðbZ n;iÞ with
Zn;iðuðtn;iÞ � un;iÞ ¼ DtðGðuðtn;iÞ � Gðun;iÞÞ;bZ n;iðuðtn;iÞ � un;iÞ ¼ DtðF ðuðtn;iÞ � F ðun;iÞÞ:
By subtracting (4.1) from (5.5), and eliminating the internal quantities uðtn;iÞ � un;i, it follows that
en ¼ Rnen�1 þ dn with
Rn ¼ 1þ sT
n e; sT

n ¼ ðb̂TbZ n þ bTZnÞðI � bAbZ n � AZnÞ�1 ð5:8Þ

and local error
dn ¼ sT
n rn þ r0;n: ð5:9Þ
In the following it will be tacitly assumed that the norm of sT
n can be bounded by a constant that is not affected

by the stiffness.
For ODE systems (1.1) with dimension M > 1 the above formulas remain valid if we replace A, bA, bT, b̂T

and e by their Kronecker products with the M �M identity matrix, to scale them up to the correct dimension.
The stage order q of the method is the largest integer such that
cl ¼ lAcl�1 ¼ lbAcl�1 ðl ¼ 1; . . . ; qÞ; ð5:10Þ

where as before c0 ¼ e. If Ae ¼ bAe, that is c ¼ ĉ, then the stage order is one.2 For the methods in [28] we have
Ae 6¼ bAe, and then the stage order is only zero.

Let us first assume that c ¼ ĉ (stage order one). The usual conditions for order p of the implicit and explicit
method imply that
1 ¼ lbTcl�1 ¼ lb̂Tcl�1 ðl ¼ 1; . . . ; pÞ: ð5:11Þ

If p P 2 the leading terms in the local discretization error are given by
dn ¼ sT
n

1

2
c2 � Ac

� �
Dt2u00ðtn�1Þ þ sT

n ðAc� bAcÞDt2u0ðtn�1Þ þ OðDt3Þ: ð5:12Þ
This gives consistency of order one, that is, an error OðDt2Þ after one step. Due to damping and cancellation
effects, similar as for standard (explicit or implicit) Runge–Kutta methods [5,18,23], this usually leads to con-
vergence of order two. This order will indeed be observed for systems (1.1) where bZ n ¼ Oð1Þ and kZnk 	 1.
For linear non-stiff problems where both bZ n; Zn ¼ OðDtÞ the classical order conditions for IMEX methods
can be recovered by expanding
sT
n ¼ ðb̂TbZ n þ bTZnÞðI þ bAbZ n þ AZn þ ðbAbZ n þ AZnÞ2 þ � � �Þ;
together with (5.6) and (5.7). For high-order methods and nonlinear problems it is more convenient, however,
to use Butcher trees to derive the local errors in a systematic way; see [6,20].
annot be larger than one because c1 ¼ 0 and therefore c2
2 6¼ â21c1. This is due to the fact that the first non-trivial stage in an explicit

d consists of a scaled forward Euler step.
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For stiff problems the above derivation shows that we will often have order reduction. It should be noted,
however, that the error constants in front of the OðDt2Þ global error terms are often quite small, and therefore
the classical order p for non-stiff problems is still important if the accuracy requirements are not too strict.
This is similar to the situation for implicit Runge–Kutta methods; see for instance [5,18,23,24].

If b̂Te ¼ bTe ¼ 1 but ĉ 6¼ c (stage order zero), such as occurs for the PR(2, 2,2) and PR(4, 3,3) schemes, then
the leading term in the local error is
3 No
dn ¼ sT
n ðc� ĉÞDtuðtn�1Þ þ OðDt2Þ: ð5:13Þ
This first-order local error will already be present for stationary solutions of (1.1) for which one normally
would not expect any error at all.3 This can lead to errors which are many orders of magnitude larger than
one might otherwise expect. Illustrations will be presented in Section 6.3.

6. Numerical tests

6.1. Population dynamics: positivity test

Our first example evolves a population density P according to
P t ¼ f ðt; xÞ þ bðx; P ÞP � rdP þ dP xx ð6:1Þ

on the unit domain [0, 1] using periodic boundary conditions and zero initial conditions Pð0; xÞ ¼ 0, x 2 ½0; 1�.
In fact, the solution can be extended for negative time by setting P ðt; xÞ ¼ 0; t 6 0.

This differential equation models the evolution of an ecological population using birth, death and migra-
tion. It assumes that the death rate is proportional to the number of individuals. This contributes a term
�rdP to the dynamics where rd is a constant independent of the number of individuals. The birth rate, on
the other hand, is assumed to depend nonlinearly on the number of individuals, as might occur in a system
with competition. We take the birth rate, bðx; P Þ, to decline nonlinearly with the population density according
to a model appearing in [8]
bðx; P Þ ¼ rbðxÞ
�

�þ P
where we set � ¼ 0:005. Also appearing in our model is a diffusion term to model migration, and a (marginally
resolved) forcing term f ðt; xÞ which could represent additive noise or some forcing effect. All calculations set
the mesh spacing equal to Dx ¼ 1=100 and use second order centered differences to discretize the diffusion
term. The stiff diffusion term is treated implicitly while the other terms are treated explicitly.

In our computations the death rate is set equal to one, ie rd � 1. The birth rate rb varies by position accord-
ing to
rbðxÞ ¼
1 if x 2 ½0; 1=2�;
100 otherwise:

�

The marginally resolved forcing term, f ðt; xÞ, is taken to be zero for all times t 6¼ 0. At time t = 0, and for each
grid point, f is assigned a random value in the interval [0.8,1.2] according to a uniform distribution. Finally,
note that we treat models with diffusion ðd � 0:01; 0:04Þ and without ðd � 0Þ. Without diffusion, the popula-
tion eventually must tend to zero in the first half of the domain. Conversely, the diffusive model tends to an
interesting non-zero profile as t increases; see Fig. 12. In all cases, the analytical solution is non-negative for all
times t P 0.

The preservation of positivity is particularly desirable in this problem since it leads to more biologically
meaningful population densities and avoids the possibility of having reaction terms grow unboundedly (which
would happen for P tending to ��). For example, taking d ¼ 0:01 and the IMEX-Adams4 method, the unfor-
tunate choice of Dt ¼ 0:0133075079 leads to a numerical error exceeding 104.
te that for a stationary solution u* of (1.1) we have F ðu
Þ þ Gðu
Þ ¼ 0, but u ¼ F ðu
Þ 6¼ 0 in general.
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Fig. 12. Steady state population density for the population dynamics model with diffusion constants d ¼ 0:01 and d ¼ 0:04.
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We have experimentally determined the largest step size for which the solution maintains positivity. The
results for the multistep schemes are given in Table 1. For comparison, also the IMEX-BDF1 scheme is
included, which consists of the forward Euler, backward Euler combination. We find that in each case
(both with and without diffusion), the observed critical time step value is in good agreement with the
coefficient of monotonicity C. In particular, the proposed schemes IMEX-BDF2, IMEX-TVB0(3, 3),
IMEX-TVB(4, 4) and IMEX-TVB0(5,5) are the schemes which exhibit the best positivity for orders 2–5,
respectively. Note that all non-negative results also gave very good approximations of the steady state.
Specifically, all calculations which maintained positivity varied from the steady state value by less than
1% at time t = 10.

The correspondence between the critical time step values and the coefficient of monotonicity is not as pre-
dictable for the IMEX Runge–Kutta methods when diffusion is present. Results based on the (non-monotone)
Runge–Kutta methods ARS(2, 2,2), ARS(3,4,3), KC(5,6,4) and KC(7,8,5) give critical time steps of zero for
both the diffusive and non-diffusive cases. Schemes built on SSP Runge–Kutta methods, PR(2, 2,2) and
PR(4, 3,3), also have the property that the coefficient of monotonicity and the critical timestep value are in
agreement for d = 0. Unfortunately, and as shown in Table 2, these schemes are unable to maintain positivity
for time steps comparable to the coefficient of monotonicity when diffusion is present. Given that the multistep
schemes only require one function evaluation per step it is clear that the IMEX-TVB schemes are more effi-
cient methods for preserving positivity in this example.

6.2. Van der Pol equation: accuracy test

The van der Pol equation,
Table 1
Critical time step values for positivity: multistep methods

Order Method C Dt ðd ¼ 0Þ Dt ðd ¼ 0:01Þ Dt ðd ¼ 0:04Þ
1 IMEX-BDF1 1.000 1.004 1.048 1.145

2 IMEX-Adams2 0.444 0.447 0.445 0.478
IMEX-SG(3,2) 0.500 0.503 0.513 0.563
IMEX-BDF2 0.625 0.628 0.636 0.686

3 IMEX-Adams3 0.159 0.161 0.152 0.163
IMEX-BDF3 0.389 0.391 0.390 0.414
IMEX-Shu(4,3) 0.333 0.335 0.330 0.348
IMEX-Shu(5,3) 0.500 0.502 0.502 0.531
IMEX-TVB0(3,3) 0.537 0.540 0.541 0.575

4 IMEX-Adams4 0 0 0 0
IMEX-BDF4 0.219 0.221 0.214 0.226
IMEX-Shu(6,4) 0.164 0.166 0.139 0.167
IMEX-TVB(4,4) 0.459 0.461 0.460 0.487

5 IMEX-BDF5 0.087 0.088 0.074 0.082
IMEX-TVB0(5,5) 0.377 0.379 0.376 0.397
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Table 2
Critical time step values for positivity: Runge–Kutta methods

Order Method C Dt ðd ¼ 0Þ Dt ðd ¼ 0:01Þ Dt ðd ¼ 0:04Þ
2 PR(2,2,2) 1.000 1.004 0.745 0.745
3 PR(4,3,3) 1.000 1.004 0.498 0.572
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y01 ¼ y2;

y02 ¼
1

�
ð�y1 þ ð1� y1Þ

2Þy2Þ
ð6:2Þ
is a useful test problem for investigating the order reduction of numerical methods. See, for example,
[4,20,25,26] for numerical studies on this equation which illustrate order reduction for a variety of semi-impli-
cit methods. See also [4] for a related error analysis for IMEX Runge–Kutta methods.

A selection of IMEX multistep and Runge–Kutta schemes was applied to this system over the integration
interval [0, 0.5]. In all cases we set � ¼ 10�6 and treat the first (non-stiff) equation explicitly and the second
(stiff) equation implicitly. Initial conditions were chosen to be y1ð0Þ ¼ 2; y2ð0Þ ¼ �0:66666654321 since this
gives errors which are not dominated by the first few steps of the method when � ¼ 10�6 [26]. Starting values
for multistep schemes were obtained using the Radau-5 method. This fifth-order implicit Runge–Kutta
method treats the van der Pol equation accurately (without order reduction) and in a very stable fashion;
see [14] for details.

Plots of the absolute error in y2 at time t ¼ 0:5 against the time-step size appear in Fig. 13(left) for some
second-order methods. The corresponding multistep schemes (IMEX-BDF2, IMEX-Shu(3, 2), IMEX-
SG(3,2) and IMEX-Adams2) all gave a clear second-order convergence. Of the Runge–Kutta schemes consid-
ered, ARS(2,2,2) gave the best results. It produced smaller errors than the multistep schemes and did not lead
to order reduction. The performance of the PR(2, 2,2) scheme, however, was disappointing: It only yielded a
first-order convergence and produced much larger errors than any other scheme that was considered.

Results for order-three appear in Fig. 13(right). The multistep schemes all gave third-order convergence,
with IMEX-Shu(4, 3) giving a somewhat smaller error than other schemes. The IMEX-TVB0(3,3) and
IMEX-BDF3 results essentially overlap. Both Runge–Kutta methods exhibited error reduction for this test
problem: second-order convergence was observed for ARS(3,4,3) and first-order convergence was observed
for PR(4,3,3).

Fig. 14(left) gives the results for fourth-order. As anticipated, the multistep methods all gave fourth-order
convergence. Of the schemes considered, the IMEX-Shu(6, 4) scheme lead to the smallest errors. Order reduc-
tion was observed for the IMEX Runge–Kutta scheme, KC(5,6,4). This method had a first-order error for
time steps below 10�3.
10—4 10—3 10—2 10—1

10—10

10—8

10—6

10—4

10—2

Δt 

er
ro

r

PR(2,2,2)

ARS(2,2,2)

IMEXBDF2

10—4 10—3 10—2 10—1

10—10

10—8

10—6

10—4

10—2

Δt 

er
ro

r

IMEXShu(4,3)

IMEXTVB 0(3,3)

ARS(3,4,3)

PR(4,3,3)

. Errors vs. scaled step size for the van der Pol equation. Left: Second-order methods. The thick black line (unlabeled to avoid
ing the plot) corresponds to IMEX-Shu(3,2) and IMEX-SG(3,2). The IMEX-Adams2 results lie midway between those for IMEX-
2) and IMEX-TVB0(3,3). Right: Third-order methods. IMEX-BDF3 essentially overlaps the results for IMEX-TVB0(3,3). IMEX-
3) and IMEX-Adams3 results lie between the results for IMEX-TVB0(3,3) and IMEX-Shu(4,3).



10
–4

10
–3

10
–2

10
–1

10
–10

10
–8

10
–6

10
–4

10
–2

Δt

er
ro

r

IMEXTVB(4,4)

KC(5,6,4)
IMEXShu(6,4)

10
–4

10
–3

10
–2

10
–1

10
–10

10
–8

10
–6

10
–4

10
–2

Δt

er
ro

r

KC(7,8,5)

IMEXTVB
0
(5,5)

IMEXBDF5

Fig. 14. Errors vs. scaled step size for the van der Pol equation. Left: Fourth-order methods. The IMEX-BDF4 results lie midway between
IMEX-TVB(4,4) and IMEX-Shu(6,4). Right: Fifth-order methods.

W. Hundsdorfer, S.J. Ruuth / Journal of Computational Physics 225 (2007) 2016–2042 2035
Fifth-order results appear in Fig. 14(right). Both IMEX-TVB0(5,5) and IMEX-BDF5 gave a clear fifth-
order convergence and very small errors. The only Runge–Kutta scheme that was considered, KC(7,8,5), pro-
duced a relatively large error that dropped to first-order for time steps below 10�3. Even for large time steps
this method gave weaker convergence than the multistep methods.

Taken together, these results suggest that multistep IMEX schemes are particularly appropriate choices for
problems that exhibit order reduction. It is also noteworthy that the performance of the proposed IMEX-TVB
schemes is competitive with traditional multistep IMEX schemes, even though monotonicity is not an impor-
tant numerical property for solving this van der Pol problem.

6.3. Linear advection–reaction: accuracy test

As a PDE test for the accuracy of the schemes we consider the linear constant coefficient problem
ut þ a1ux ¼ �k1uþ k2vþ s1;

vt þ a2vx ¼ k1u� k2vþ s2

ð6:3Þ
for 0 < x < 1, 0 < t < 1, with parameters a1 ¼ 1, a2 ¼ 0, k1 ¼ 106, k2 ¼ 2k1 and s1 ¼ 0, s2 ¼ 1. The initial and
boundary values are
uðx; 0Þ ¼ 1þ s2x; vðx; 0Þ ¼ k1

k2
uðx; 0Þ þ 1

k2
s2; uð0; tÞ ¼ c1ðtÞ:
For c1 we will consider two different choices to illustrate possible order reduction effects. Since a2 is taken to be
zero there are no boundary conditions for v.

Note that in the limit k1 !1, k1=k2 fixed, we have k1u ¼ k2v, which for �u ¼ uþ v leads to a reduced equa-
tion �ut þ �a�ux ¼ s1 þ s2 with advective velocity �a ¼ ðk2a1 þ k1a2Þ=ðk1 þ k2Þ.

The spatial discretization in this test is performed on a uniform grid, xi ¼ iDx, i ¼ 1; . . . ;m with Dx ¼ 1=m.
The errors are measured in the discrete L1-norm (kvk1 ¼ h

P
ijvij) at the final time t = 1. In the IMEX schemes

the advection term is treated explicitly, the stiff reaction implicitly.
First consider c1 � 1. Then the initial values provide a stationary solution. We consider m = 100 and first-

order upwind spatial discretization, which is exact here. Table 3 gives the L1-errors of the v-component at the
output time t = 1 for various step sizes. We see that for this stationary solution there is a strong order reduc-
tion for the two PR schemes: they converge with order one only.

For comparison we included results for the ARS(2, 2,2) and IMEX-BDF2 methods in this table; the other
IMEX schemes exhibit a similar behavior. The results for these methods are not exact. This is due to round-off
errors which cause k1u� k2vþ s2 to deviate from the exact value of zero (it is of the order 10�10 in Matlab).
However, this round-off is rather harmless in comparison to the very disappointing behavior of the PR(2, 2,2)
and PR(4, 3,3) schemes.

With respect to the behavior of these two PR schemes, the convergence results in [4] should be mentioned.
In that work, an analysis of IMEX Runge–Kutta methods for a class of singular perturbation problems



Table 3
Stationary solution, m = 100, L1-errors versus step size

Dt 1:00� 10�2 5:00� 10�3 2:50� 10�3 1:25� 10�3

PR(2,2,2) 2:36� 10�3 1:18� 10�3 5:89� 10�4 2:93� 10�4

PR(4,3,3) 9:47� 10�4 4:74� 10�4 2:37� 10�4 1:18� 10�4

ARS(2,2,2) 5:46� 10�13 2:06� 10�13 1:30� 10�13 8:01� 10�14

IMEX-BDF2 1:74� 10�11 9:40� 10�12 1:49� 10�11 1:35� 10�11

2036 W. Hundsdorfer, S.J. Ruuth / Journal of Computational Physics 225 (2007) 2016–2042
showed that the second-order three-stage method of [28, Table 4] retains its order-two behavior if the stiffness
parameter tends to zero, due to stiff accuracy of the implicit method. The linear reaction in this test is also of
singular perturbation type, possessing eigenvalues +0 and �ðk1 þ k2Þ, and the same stationary test also
showed a second-order convergence for this method. However, by reducing the stiffness, setting k1 ¼ 104,
k2 ¼ 103, we find the reaction does not dominate the advection term by much anymore, and then again a
slower convergence of order near one is observed. Of course, since this is still for the trivial stationary prob-
lem, even order-two convergence would not be very satisfactory.

Next, consider the time dependent Dirichlet data c1ðtÞ ¼ 1� sinð12tÞ4 at the left boundary, propagating
with speed �a ¼ 0:66, approximately, as seen in Fig. 15. Since the initial and boundary values are close to chem-
ical equilibrium, the solution of this problem is smooth. For the spatial discretization we therefore consider
fourth-order central differences in the interior domain. At the boundaries we can take third-order finite differ-
ences, maintaining an overall accuracy of order four (also in the maximum norm), similar to [18, pp. 155, 156].
Starting values for the multistep schemes are taken to be un ¼ u0 for n < 0, which is allowed here because the
initial solution still can be viewed as a solution with c1ðtÞ ¼ 1 for t < 0. The temporal errors are displayed in
Fig. 16 for a spatial grid with m = 400, giving spatial errors of 1:5� 10�5. This spatial error level is indicated
by a horizontal dashed line. The time stepping errors are mainly of interest if they are larger than 10% of this
spatial error; if they are smaller their contribution to the total error becomes negligible.

For this example we see some order reduction for the IMEX Runge–Kutta methods. In the left picture of
Fig. 16 both the ARS(2, 2,2) and ARS(3, 4,3) scheme show a second-order behavior. For ARS(3, 4,3) the
smaller error constant is apparent, but, nevertheless, these results are unfavorable in comparison to the
IMEX-BDF3 and IMEX-TVB0(3,3) schemes which do not suffer from order reduction effects.

Also the asymptotic error behavior for the two KC schemes is not entirely according to their classical
orders. However, in this example with m = 400 the order reduction appears on an error level far below the
spatial error. (Temporal errors under 10% of the spatial error will not contribute much to the total PDE
error.) We did observe, however, that on finer spatial grids the temporal errors remain almost the same pro-
vided the step size is sufficiently small to have stability, and therefore this order reduction would be an issue for
very high-accuracy computations.

The same test for the IMEX-Adams schemes gave somewhat smaller errors than the corresponding IMEX-
BDF and IMEX-TVB schemes, but the IMEX-Adams schemes become unstable sooner for increasing Dt. This
effect was particularly pronounced for the four-step scheme, as can be expected from the figures for the sta-
bility domains. Also the IMEX-Shu schemes yielded somewhat smaller errors than the IMEX-BDF and
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IMEX-TVB schemes of the same order, but clearly lagged in performance when compared to IMEX-BDF and
IMEX-TVB schemes with the same step-number k. Finally we note that both extensions (3.4) and (3.5) of the
explicit Shu(3, 2) method were tried, and their results were nearly identical, indicating that the accuracy of the
explicit methods in the IMEX combinations is of primary relevance here.

6.4. Adsorption–desorption: accuracy test with spatial WENO discretization

As a last test, we consider a simplified adsorption–desorption problem with a dissolved concentration u and
adsorbed concentration v. The equations are given by
ut þ aux ¼ jðv� /ðuÞÞ;
vt ¼ �jðv� /ðuÞÞ

ð6:4Þ
for 0 < x < 1 and 0 < t < T , with /ðuÞ ¼ k1u=ð1þ k2uÞ. The initial values are u ¼ v ¼ 0, and the boundary
values are
uð0; tÞ ¼ 1� cos2ð6ptÞ if a > 0;

uð1; tÞ ¼ 0 if a < 0:

�

The parameters are taken as j ¼ 106, k1 ¼ 50, k2 ¼ 100, the final time is T ¼ 5
4
, and the velocity is set to be

a ¼ �3 arctanð100ðt � 1ÞÞ=p, giving approximately a ¼ 1:5 for t < 1 (adsorption phase) and a ¼ �1:5 for
t > 1 (desorption phase). A similar problem was considered in [18] with constant inflow conditions. Here
we take an oscillatory inflow condition to get some smooth variations in the solution, along with the shocks,
as shown in Fig. 17.

Again, this problem is of the form (1.3). In limit j!1 it holds that v ¼ /ðuÞ, which gives a reduced (sca-
lar) equation for �u ¼ uþ /ðuÞ of the form �uþ a�f ð�uÞx ¼ 0, with �f implicitly defined by �f ðuþ /ðuÞÞ � u.

For the spatial discretization we use the WENO5 scheme, as given for instance in the review paper [31] (for-
mulas (2.58)–(2.63) with parameter � ¼ 10�12), on a uniform (cell centered) grid, xi ¼ i� 1

2

� �
Dx, i ¼ 1; . . . ;m,

with mesh width Dx ¼ 1=m. This WENO5 spatial scheme provides high accuracy in smooth regions together
with good monotonicity properties near shocks.

In the IMEX schemes the advection has been treated explicitly, the stiff relaxation term implicitly (with a
Newton iteration, where care must be taken to end up on the correct, positive branch). We compare the
numerical values for the total concentration at the final time t ¼ T with an accurate reference solution. As
before, the errors are measured in the discrete L1-norm. The starting values for the multistep schemes were
taken as un ¼ u0 for n < 0. The alternative, using an IMEX Runge–Kutta method of the appropriate order
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Fig. 17. Dissolved concentration u (dashed lines) and total concentration uþ v (solid lines) for the adsorption–desorption problem at time
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to compute u1; . . . ; uk�1 gave nearly identical results in the error range considered here. The step size sequence
in this test was taken as Dt ¼ 2�jDx (results indicated by large markers) and near instabilities extra step sizes
were added (small markers). The step sizes for the Runge–Kutta schemes were scaled as before. Fig. 18 shows
the temporal errors for the second- and third-order IMEX schemes as function of the (scaled) step size. The
results for the higher-order schemes are shown in Fig. 19.

In Fig. 18, the results for the PR(2, 2,2), ARS(2,2,2) and IMEX-BDF2 schemes largely coincide. The errors
for the IMEX-Adams2 and IMEX-Shu(3, 2) schemes are somewhat smaller, due to smaller error constants. As
before, the two extensions (3.4) and (3.5) of the explicit Shu(3, 2) method gave nearly identical results.

Compared to IMEX-TVB(3,3) and IMEX-BDF3, the third-order IMEX-Shu(4,3) and IMEX-Shu(5, 3)
schemes again yielded somewhat smaller errors but they are more quickly unstable for increasing step sizes.
Moreover, since these IMEX-Shu schemes are four- and five-step schemes, their errors could be compared
to the corresponding higher-order IMEX-TVB and IMEX-BDF schemes and then there would be a clear
advantage for the latter ones.

The high accuracy of the ARS(3, 4,3) scheme in this test is remarkable. That is due to the fact that the
underlying explicit method is of order four for linear problems. Even though the WENO5 formulas will pro-
duce a nonlinear advection discretization, the fourth-order accuracy is well maintained. For easier comparison
the ARS(3,4,3) results are again displayed in Fig. 19, where it can be seen that the asymptotic error behavior
is not entirely fourth-order; cf. the nearby results of IMEX-BDF4 and IMEX-TVB(4, 4).

The IMEX-Adams4 scheme needs small step sizes to prevent instabilities, and even then the error behavior
is somewhat irregular. We did observe that this irregular behavior can be improved by using a high-order
Runge–Kutta starting procedure together with a re-start at t = 1, where the velocity rapidly changes sign.

Further is it clear in Fig. 19 that both KC schemes are not doing too well in this test, due to instabilities.
Once the step sizes are small enough for stability, then the errors become immediately very small, in particular
for the KC(7,8,5) scheme. Nevertheless, comparison with IMEX-TVB0(5, 5) and IMEX-BDF5 is unfavorable
for KC(7, 8,5) in this test.

Finally we note that the spatial error is here 1:2� 10�3. Therefore temporal errors below 10�4 (�10% of the
spatial error) are not very relevant anymore from the PDE point of view. In this respect, the results for IMEX-
TVB0(5,5) are slightly better than those for the IMEX-BDF5 scheme.

6.5. Remarks on starting procedures and variable step sizes

In the above tests Runge–Kutta starting procedures were occasionally used for the linear multistep meth-
ods. Another popular procedure is to embed the multistep methods within a self-starting collection of multi-
step methods. For this we would start with very small step sizes and compute u1 with a +1-step method, say
the IMEX-BDF1 scheme consisting of the forward Euler, backward Euler combination, then u2 by a +2-step
method, and so on, while increasing the step size. This procedure requires the use of variable step sizes. Var-
iable steps are also important of course when the temporal smoothness of the solution changes.

The fixed step size formulas can easily be adjusted for variable steps Dtn ¼ tn � tn�1 by using suitable inter-
polation. Consider for the step from tn�k; . . . ; tn�1 to tn the fixed step size formula
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un � b0DtnGn ¼
Xk

j¼1

ðaju
n�j þ b̂jDtnF 
n�j þ bjDtnG
n�jÞ; ð6:5Þ
together with interpolation formulas to map the values un�j, F n�j and Gn�j from the non-uniform grid to the
uniformly distributed points t
n�j ¼ tn � jDtn, j ¼ 1; . . . ; k. Actually, for a growing step size sequence, some of
the t
n�j will be smaller than tn�k, so formally we are then applying extrapolation.

For the interpolation of u we use the ðk þ 1Þst-order formula involving all un�j, including the (still
unknown) value un. For F and G we use the kth-order formula using the values F n�j;Gn�j with j ¼ 1; . . . ; k.
It is easily seen that if the fixed step size method has order k, then this variable step size implementation will
have the same order.

Example 6.1. Consider a non-uniform grid with step size ratios hn ¼ Dtn=Dtn�1. The two-step method with
fixed step size coefficients
un ¼ a1un�1 þ a2u
n�2 þ b̂1DtnF n�1 þ b̂2DtnF 
n�2 þ b0DtnGn þ b1DtnGn�1 þ b2DtnG
n�2 ð6:6Þ
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can be used with (linear interpolation)
F 
n�2 ¼ ð1� hnÞF n�1 þ hnF n�2; G
n�2 ¼ ð1� hnÞGn�1 þ hnGn�2 ð6:7Þ

and (quadratic interpolation)
u
n�2 ¼ �
1� hn

1þ hn
un þ 2

1� h2
n

1þ hn
un�1 þ 2

h2
n

1þ hn
un�2: ð6:8Þ
The resulting scheme can be rewritten in the variable coefficient form
un ¼ a1;nun�1 þ a2;nun�2 þ b̂1;nDtnF n�1 þ b̂2;nDtnF n�2 þ b0;nDtnGn þ b1;nDtnGn�1 þ b2;nDtnGn�2: ð6:9Þ

Denoting cn ¼ ð1þ hnÞ þ ð1� hnÞa2, these variable coefficients are given by
a1;n ¼
ð1þ hnÞa1 þ 2ð1� h2

nÞa2

cn
; a2;n ¼

2h2
na2

cn
; b̂1;n ¼

ð1þ hnÞb̂1 þ ð1� hnÞb̂2

cn
;

b̂2;n ¼
hnð1þ hnÞb̂2

cn
; b0;n ¼

ð1þ hnÞb0

cn
; b1;n ¼

ð1þ hnÞb1 þ ð1� hnÞb2

cn
; b2;n ¼

hnð1þ hnÞb2

cn
:

For a detailed study of variable step size IMEX formulas we refer to [33]. A proper implementation of an
IMEX multistep package will involve many operational strategies. It is part of our future research plans to
construct such packages based on the IMEX-BDF and IMEX-TVB schemes discussed in this paper.
7. Conclusions

In this paper, high-order implicit–explicit linear multistep methods have been constructed based on explicit
methods which exhibit good monotonicity and boundedness properties. The implicit methods have been cho-
sen to give a strong decay of high-frequency error modes, and mild step size restrictions for the linear test
problems for advection, diffusion and reactions. Our methods have been studied for a variety of examples,
and compared with recent implicit–explicit Runge–Kutta methods.

The k-step IMEX-Adams schemes, based on the explicit Adams–Bashforth methods, have small error con-
stants, but are not generally recommended because of their relatively poor linear stability and monotonicity
properties. This poor behavior is particularly pronounced with increasing step number k. For example the
IMEX-Adams4 method has a monotonicity threshold of 0, and we were unable to maintain positivity in
the population dynamics model for any positive step size. In the adsorption–desorption problem, this method
became unstable for much smaller timesteps than any other fourth-order IMEX multistep scheme we
considered.

Much better results were obtained for the IMEX-BDF schemes. These schemes give a strong (indeed opti-
mal) decay of high-frequency error modes with moderate error constants, and good linear stability. The rel-
ative performance in terms of monotonicity varies by k. The second-order IMEX-BDF2 scheme gave the
mildest monotonicity restriction of any of the second-order schemes under consideration. This property, com-
bined with its strong decay of high-frequency error modes, good linear stability properties and moderate error
constants make IMEX-BDF2 a very versatile scheme. The IMEX-BDF3 and IMEX-BDF4 schemes also had
reasonable monotonicity properties, although their monotonicity thresholds are significantly smaller than for
the corresponding IMEX-TVB0(3,3) and IMEX-TVB(4,4) schemes. The IMEX-BDF5 scheme may be of
somewhat more limited use, however, as both its monotonicity and linear stability properties were far more
restrictive than in the third- and fourth-order cases.

The IMEX schemes based on the explicit SSP/TVD methods of Shu often gave good performance when
compared to methods of the same order. However, when compared to methods using the same number of
steps one finds that a far better performance can be obtained by choosing either an IMEX-BDF or IMEX-
TVB scheme of higher order.

For orders three to five, the optimal monotonicity was obtained using the IMEX-TVB schemes. These
schemes allowed timesteps which were 38%, 109%, and 335% larger than the corresponding third-, fourth-
and fifth-order IMEX-BDF schemes. The schemes also give some damping of high-frequency error modes,
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and exhibit very good linear stability (typically superior to the IMEX-BDF schemes). The error constants of
the IMEX-TVB schemes of order four and five are somewhat larger than with the IMEX-BDF schemes,
however.

Finally, we note that our numerical tests show that IMEX multistep schemes have a number of advantages
over recent IMEX Runge–Kutta schemes. Low stage orders can degrade the formal order of accuracy in
IMEX Runge–Kutta methods, which is a behavior not exhibited by IMEX multistep methods. Moreover,
the complicated nature of the local discretization errors with the Runge–Kutta schemes makes it difficult to
provide good error estimations for stiff problems.
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